Pooling homogeneous ensembles to build heterogeneous ensembles

نویسندگان

  • Maryam Sabzevari
  • Gonzalo Martínez-Muñoz
  • Alberto Suárez
چکیده

In ensemble methods, the outputs of a collection of diverse classifiers are combined in the expectation that the global prediction be more accurate than the individual ones. Heterogeneous ensembles consist of predictors of different types, which are likely to have different biases. If these biases are complementary, the combination of their decisions is beneficial. In this work, a family of heterogeneous ensembles is built by pooling classifiers from M homogeneous ensembles of different types of size T. Depending on the fraction of base classifiers of each type, a particular heterogeneous combination in this family is represented by a point in a regular simplex in M dimensions. The M vertices of this simplex represent the different homogeneous ensembles. A displacement away from one of these vertices effects a smooth transformation of the corresponding homogeneous ensemble into a heterogeneous one. The optimal composition of such heterogeneous ensemble can be determined using cross-validation or, if bootstrap samples are used to build the individual classifiers, out-of-bag data. An empirical analysis of such combinations of bootstraped ensembles composed of neural networks, SVMs, and random trees (i.e. from a standard random forest) illustrates the gains that can be achieved by this heterogeneous ensemble creation method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic Programming of Heterogeneous Ensembles for Classification

The ensemble classification paradigm is an effective way to improve the performance and stability of individual predictors. Many ways to build ensembles have been proposed so far, most notably bagging and boosting based techniques. Evolutionary algorithms (EAs) also have been widely used to generate ensembles. In the context of heterogeneous ensembles EAs have been successfully used to adjust w...

متن کامل

Heterogeneous Ensemble Classification

The problem of multi-class classification is explored using heterogeneous ensemble classifiers. Heterogeneous ensembles classifiers are defined as ensembles, or sets, of classifier models created using more than one type of classification algorithm. For example, the outputs of decision tree classifiers could be combined with the outputs of support vector machines (SVM) to create a heterogeneous...

متن کامل

Coherent Transport of Single Photon in a Quantum Super-cavity with Mirrors Composed of Λ-Type Three-level Atomic Ensembles

In this paper, we study the coherent transport of single photon in a coupled resonator waveguide (CRW) where two threelevel Λ-type atomic ensembles are embedded in two separate cavities. We show that it is possible to control the photon transmission and reflection coefficients by using classical control fields. In particular, we find that the total photon transmission and reflection are achieva...

متن کامل

Learning to Assemble Classifiers via Genetic Programming

This article introduces a novel approach for building heterogeneous ensembles based on genetic programming (GP). Ensemble learning is a paradigm that aims at combining individual classifiers outputs to improve their performance. Commonly, classifiers outputs are combined by a weighted sum or a voting strategy. However, linear fusion functions may not effectively exploit individual models’ redun...

متن کامل

Ensemble strategies to build neural network to facilitate decision making

There are three major strategies to form neural network ensembles. The simplest one is the Cross Validation strategy in which all members are trained with the same training data. Bagging and boosting strategies pro-duce perturbed sample from training data. This paper provides an ideal model based on two important factors: activation function and number of neurons in the hidden layer and based u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1802.07877  شماره 

صفحات  -

تاریخ انتشار 2018